addition theorem - определение. Что такое addition theorem
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое addition theorem - определение

THEOREM
Algebraic addition theorem
Найдено результатов: 2101
Nucleophilic addition         
ADDITION REACTION WHERE A CHEMICAL COMPOUND WITH AN ELECTRON-DEFICIENT OR ELECTROPHILIC DOUBLE OR TRIPLE BOND, A Π BOND,REACTS WITH ELECTRON-RICH REACTANT (NUCLEOPHILE),WITH DISAPPEARANCE OF THE DOUBLE BOND AND CREATION OF TWO NEW SINGLE, OR Σ, BONDS
Nucleophillic addition
In organic chemistry, a nucleophilic addition reaction is an addition reaction where a chemical compound with an electrophilic double or triple bond reacts with a nucleophile, such that the double or triple bond is broken. Nucleophilic additions differ from electrophilic additions in that the former reactions involve the group to which atoms are added accepting electron pairs, whereas the latter reactions involve the group donating electron pairs.
Divergence theorem         
  • n}}
  • A volume divided into two subvolumes. At right the two subvolumes are separated to show the flux out of the different surfaces.
  • The volume can be divided into any number of subvolumes and the flux out of ''V'' is equal to the sum of the flux out of each subvolume, because the flux through the <span style="color:green;">green</span> surfaces cancels out in the sum. In (b) the volumes are shown separated slightly, illustrating that each green partition is part of the boundary of two adjacent volumes
  • </math> approaches <math>\operatorname{div} \mathbf{F}</math>
  • The divergence theorem can be used to calculate a flux through a [[closed surface]] that fully encloses a volume, like any of the surfaces on the left. It can ''not'' directly be used to calculate the flux through surfaces with boundaries, like those on the right. (Surfaces are blue, boundaries are red.)
  • The vector field corresponding to the example shown. Vectors may point into or out of the sphere.
GENERALIZATION OF THE FUNDAMENTAL THEOREM IN VECTOR CALCULUS
Gauss' theorem; Gauss's theorem; Gauss theorem; Ostrogradsky-Gauss theorem; Ostrogradsky's theorem; Gauss's Theorem; Divergence Theorem; Gauss' divergence theorem; Ostrogradsky theorem; Gauss-Ostrogradsky theorem; Gauss Ostrogradsky theorem; Gauss–Ostrogradsky theorem
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, reprinted in is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
theorem         
  • planar]] map with five colors such that no two regions with the same color meet. It can actually be colored in this way with only four colors. The [[four color theorem]] states that such colorings are possible for any planar map, but every known proof involves a computational search that is too long to check by hand.
  • universality]]) resembles the [[Mandelbrot set]].
  • strings of symbols]] may be broadly divided into [[nonsense]] and [[well-formed formula]]s. A formal language can be thought of as identical to the set of its well-formed formulas. The set of well-formed formulas may be broadly divided into theorems and non-theorems.
IN MATHEMATICS, A STATEMENT THAT HAS BEEN PROVED
Theorems; Proposition (mathematics); Theorum; Mathematical theorem; Logical theorem; Formal theorem; Theorem (logic); Mathematical proposition; Hypothesis of a theorem
n.
Proposition (to be demonstrated), position, dictum, thesis.
Well-ordering theorem         
SET-THEORETIC THEOREM OR PRINCIPLE, EQUIVALENT TO THE AXIOM OF CHOICE
Well ordering theorem; Zermelo's well-ordering theorem; Wellordering theorem; Zermelo's theorem; Zermelo Theorem
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering.
Wedderburn's little theorem         
In mathematics, Wedderburn's little theorem states that every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields.
Theorem         
  • planar]] map with five colors such that no two regions with the same color meet. It can actually be colored in this way with only four colors. The [[four color theorem]] states that such colorings are possible for any planar map, but every known proof involves a computational search that is too long to check by hand.
  • universality]]) resembles the [[Mandelbrot set]].
  • strings of symbols]] may be broadly divided into [[nonsense]] and [[well-formed formula]]s. A formal language can be thought of as identical to the set of its well-formed formulas. The set of well-formed formulas may be broadly divided into theorems and non-theorems.
IN MATHEMATICS, A STATEMENT THAT HAS BEEN PROVED
Theorems; Proposition (mathematics); Theorum; Mathematical theorem; Logical theorem; Formal theorem; Theorem (logic); Mathematical proposition; Hypothesis of a theorem
·vt To formulate into a theorem.
II. Theorem ·noun A statement of a principle to be demonstrated.
III. Theorem ·noun That which is considered and established as a principle; hence, sometimes, a rule.
Pappus's centroid theorem         
THEOREM THAT, FOR A SOLID OF REVOLUTION OF A PLANAR FIGURE, THE SURFACE AREA EQUALS THE FIGURE’S PERIMETER TIMES THE DISTANCE THE PERIMETER’S CENTROID TRAVELS, AND THE VOLUME EQUALS THE FIGURE’S AREA TIMES THE DISTANCE THE FIGURE’S CENTROID TRAVEL
Pappus-Guldinus theorem; Guldinus theorem; Theorem of Pappus; First theorem of pappus; Pappus centroid theorem; Pappus–Guldinus theorem; Theorem of papus; Theorem of Papus
In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution.
theorem         
  • planar]] map with five colors such that no two regions with the same color meet. It can actually be colored in this way with only four colors. The [[four color theorem]] states that such colorings are possible for any planar map, but every known proof involves a computational search that is too long to check by hand.
  • universality]]) resembles the [[Mandelbrot set]].
  • strings of symbols]] may be broadly divided into [[nonsense]] and [[well-formed formula]]s. A formal language can be thought of as identical to the set of its well-formed formulas. The set of well-formed formulas may be broadly divided into theorems and non-theorems.
IN MATHEMATICS, A STATEMENT THAT HAS BEEN PROVED
Theorems; Proposition (mathematics); Theorum; Mathematical theorem; Logical theorem; Formal theorem; Theorem (logic); Mathematical proposition; Hypothesis of a theorem
n.
1) to deduce, formulate a theorem
2) to prove; test a theorem
3) a binomial theorem
theorem         
  • planar]] map with five colors such that no two regions with the same color meet. It can actually be colored in this way with only four colors. The [[four color theorem]] states that such colorings are possible for any planar map, but every known proof involves a computational search that is too long to check by hand.
  • universality]]) resembles the [[Mandelbrot set]].
  • strings of symbols]] may be broadly divided into [[nonsense]] and [[well-formed formula]]s. A formal language can be thought of as identical to the set of its well-formed formulas. The set of well-formed formulas may be broadly divided into theorems and non-theorems.
IN MATHEMATICS, A STATEMENT THAT HAS BEEN PROVED
Theorems; Proposition (mathematics); Theorum; Mathematical theorem; Logical theorem; Formal theorem; Theorem (logic); Mathematical proposition; Hypothesis of a theorem
(theorems)
A theorem is a statement in mathematics or logic that can be proved to be true by reasoning.
N-COUNT
theorem         
  • planar]] map with five colors such that no two regions with the same color meet. It can actually be colored in this way with only four colors. The [[four color theorem]] states that such colorings are possible for any planar map, but every known proof involves a computational search that is too long to check by hand.
  • universality]]) resembles the [[Mandelbrot set]].
  • strings of symbols]] may be broadly divided into [[nonsense]] and [[well-formed formula]]s. A formal language can be thought of as identical to the set of its well-formed formulas. The set of well-formed formulas may be broadly divided into theorems and non-theorems.
IN MATHEMATICS, A STATEMENT THAT HAS BEEN PROVED
Theorems; Proposition (mathematics); Theorum; Mathematical theorem; Logical theorem; Formal theorem; Theorem (logic); Mathematical proposition; Hypothesis of a theorem
['???r?m]
¦ noun Physics & Mathematics a general proposition not self-evident but proved by a chain of reasoning.
?a rule in algebra or other branches of mathematics expressed by symbols or formulae.
Derivatives
theorematic -'mat?k adjective
Origin
C16: from Fr. theoreme, or via late L. from Gk theorema 'speculation, proposition'.

Википедия

Addition theorem

In mathematics, an addition theorem is a formula such as that for the exponential function:

ex + y = ex · ey,

that expresses, for a particular function f, f(x + y) in terms of f(x) and f(y). Slightly more generally, as is the case with the trigonometric functions sin and cos, several functions may be involved; this is more apparent than real, in that case, since there cos is an algebraic function of sin (in other words, we usually take their functions both as defined on the unit circle).

The scope of the idea of an addition theorem was fully explored in the nineteenth century, prompted by the discovery of the addition theorem for elliptic functions. To "classify" addition theorems it is necessary to put some restriction on the type of function G admitted, such that

F(x + y) = G(F(x), F(y)).

In this identity one can assume that F and G are vector-valued (have several components). An algebraic addition theorem is one in which G can be taken to be a vector of polynomials, in some set of variables. The conclusion of the mathematicians of the time was that the theory of abelian functions essentially exhausted the interesting possibilities: considered as a functional equation to be solved with polynomials, or indeed rational functions or algebraic functions, there were no further types of solution.

In more contemporary language this appears as part of the theory of algebraic groups, dealing with commutative groups. The connected, projective variety examples are indeed exhausted by abelian functions, as is shown by a number of results characterising an abelian variety by rather weak conditions on its group law. The so-called quasi-abelian functions are all known to come from extensions of abelian varieties by commutative affine group varieties. Therefore, the old conclusions about the scope of global algebraic addition theorems can be said to hold. A more modern aspect is the theory of formal groups.